Usually, porous materials are synthesized by using conventional electric heating, which can be energy‐ and time‐consuming. Microwave heating is commonly used in many households to quickly heat food. Microwave ovens can also be used as powerful devices in the synthesis of various porous materials. The microwave‐assisted synthesis offers a simple, fast, efficient, and economic way to obtain many of the advanced nanomaterials. This review summarizes the recent achievements in the microwave‐assisted synthesis of diverse groups of nanoporous materials including silicas, carbons, metal–organic frameworks, and metal oxides. Microwave‐assisted methods afford highly porous materials with high specific surface areas (SSAs), e.g., activated carbons with SSA ≈3100 m2 g−1, metal–organic frameworks with SSA ≈4200 m2 g−1, covalent organic frameworks with SSA ≈2900 m2 g−1, and metal oxides with relatively small SSA ≈300 m2 g−1. These methods are also successfully implemented for the preparation of ordered mesoporous silicas and carbons as well as spherically shaped nanomaterials. Most of the nanoporous materials obtained under microwave irradiation show potential applications in gas adsorption, water treatment, catalysis, energy storage, and drug delivery, among others.