In the current study, decomposition of diclofenac, diflunisal, ibuprofen, mefenamic acid and piroxicam was tested using nine identified strains of endophytic and epiphytic fungi (from Ascomycota) adapted to natural products resembling the pharmaceuticals. The strains were isolated from a medicinal plant, Plantago lanceolata leaves. Metabolites were tentatively identified by liquid chromatography -tandem mass spectrometry ).Eighteen of the 45 combinations resulted in significant decrease of the concentration of the NSAIDs in model solutions. The most active strains were Aspergillus nidulans and Bipolaris tetramera, while Epicoccum nigrum and Aspergillus niger showed somewhat less potency. Piroxicam and diclofenac were most resistant to biotransformation, while ibuprofen and mefenamic acid were efficiently metabolized by most strains. Ten metabolites could be tentatively identified, includinghydroxy-metabolites of all tested NSAIDs, and a dihydroxy-metabolite of piroxicam. This biotransformation is likely to modify the toxicity and bioaccumulation potential of these pharmaceuticals.The results highlight the applicability of polyphenol-rich dried medicinal plant materials as an excellent source of fungi with high biotransforming potential. The results also suggest more in-depth testing of these fungi for biodegradation processes.