Amide-sulfonamides provide a potent anti-inflammatory scaffold targeting the CXCR4 receptor. A series of novel amide-sulfonamide derivatives were investigated for their gas-phase fragmentation behaviors using electrospray ionization ion trap mass spectrometry and quadrupole time-of-flight mass spectrometry in negative ion mode. Upon collision-induced dissociation (CID), deprotonated amidesulfonamides mainly underwent either an elimination of the amine to form the sulfonyl anion and amide anion or a benzoylamide derivative to provide sulfonamide anion bearing respective substituent groups. Based on the characteristic fragment ions and the deuterium-hydrogen exchange experiments, three possible fragmentation mechanisms corresponding to ion-neutral complexes including [sulfonyl anion/amine] complex (INC-1), [sulfonamide anion/benzoylamide derivative] complex (INC-2) and [amide anion/sulfonamide] complex (INC-3), respectively, wereproposed. These three ion-neutral complexes might be produced by the cleavages of S-N and C-N bond from the amide-sulfonamides, which generated the sulfonyl anion (Route 1), sulfonamide anion (Route 2) and the amide anion (Route 3). DFT calculations suggested that Route 1, which generated the sulfonyl anion (ion c) is more favorable. In addition, the elimination of SO 2 through a three-membered-ring transition state followed by the formation of C-N was observed for all the amidesulfonamides.