The various layers of the extracellular matrix, forming the endomysium, perimysium and epimysium of skeletal muscles, provide essential structural and mechanical support to contractile fibres. Crucial aspects of muscle elasticity and fibre contractility are dependent on proper cell-matrix interactions. A complex network of collagen fibres, nonfibrillar collagens, proteoglycans, matricellular proteins, matrix metalloproteinases, adhesion receptors and signalling molecules maintain the physical structure for force transmission within motor units, embed critical cellular structures such as capillaries and motor neurons, and enable essential sarcolemma-matrix adhesion processes and signalling cascades. The systems biological concept of protein complexomes, which assumes the existence of interconnectivities between large protein assemblies, can be readily applied to the proteins within the extracellular space of muscles. Recent proteomic studies confirm that the extracellular matrix complexome has considerable influence on the integrity and cellular functions of skeletal muscle fibres. Adaptations or changes in the organization of the extracellular matrix play a crucial role during fibre regeneration following injury, extensive neuromuscular activity or pathophysiological insults. This chapter outlines the molecular components of the matrisome from skeletal muscles and discusses the extracellular matrix in relation to myogenesis, maturation of motor units, adaptation to changed functional demands and myofibrosis in muscular disorders.