Forward osmosis (FO) as an osmotically driven membrane process is severely affected by the concentration polarization phenomenon on both sides of the membrane as well as inside the support layer. Though the effect of internal concentration polarization (ICP) in the porous support on the draw solution side is far more pronounced than that of the external concentration polarization (ECP), still the importance of ECP cannot be neglected. The ECP becomes particularly important when the feed flow rate is enhanced to increase the permeation flux by increasing the agitation and turbulence on the membrane surface. To capture the effect of ECP a suitable value of mass transfer coefficient must be determined. In this chapter, an FO mass transport model that accounts for the presence of both ICP and ECP phenomena is first presented on the basis of solution-diffusion model coupled with diffusion-convection. Then, three methods for the estimation of mass transfer coefficient based on empirical Sherwood (Sh) number correlations, pressure-driven reverse osmosis (RO), and osmosis-driven pressure retarded osmosis (PRO) are proposed. Finally, a methodology for the prediction of water flux through FO membranes using the theoretical model and calculated/measured parameters (hydraulic permeability, salt resistivity of the support layer, and mass transfer coefficient) is presented.