Centrioles are-widely conserved barrel-shaped organelles present in most organisms. They are indirectly involved in the organization of the cytoplasmic microtubules both in interphase and during the cell division by recruiting the molecules needed for microtubule nucleation. Moreover, the centrioles are required to assemble cilia and flagella by the direct elongation of their microtubule wall. Due to the importance of the cytoplasmic microtubules in several aspects of the cell life, any defect in centriole structure can lead to cell abnormalities that in humans may result in significant diseases. Many aspects of the centriole dynamics and function have been clarified in the last years, but little attention has been paid to the exceptions in centriole structure that occasionally appeared within the animal kingdom. Here, we focused our attention on non-canonical aspects of centriole architecture within the Hexapoda. The Hexapoda is one of the major animal groups and represents a good laboratory in which to examine the evolution and the organization of the centrioles. Although these findings represent obvious exceptions to the established rules of centriole organization, they may contribute to advance our understanding of the formation and the function of these organelles.Thus, the increase of g-tubulin leads to an increase in the nucleation of both astral and spindle microtubules, which drive the assembly of a functional spindle.At the heart of the centrosome there is a pair of centrioles, two microtubule-based barrel-shaped organelles of defined length and diameter [29], that warrants the integrity and the supramolecular organization of the centrosome itself. The coiled-coil proteins, pericentrin-like protein (PLP) and Cep152/Asterless form the scaffold for the matrix proteins Cep192/Spd-2, Cep215/Cnn and g-tubulin.It was observed PLP's C termini are located close to the centriole wall [26].In addition, to be the reference point for the organization of the centrosomal material, the centrioles may also act as templates for the axoneme assembly in cilia and flagella, that are involved in signalling and motility [30]. Therefore, the proper organization and dynamics of the centrioles are mandatory to ensure healthy cell life. Structural anomalies of the centrioles are found in several human cancers [31][32][33][34][35][36] and can be the cause of a spectrum of pathologies spanning from infertility to ciliopathies [37,38].Since, the centrioles impact upon several aspects of cell development and physiology, their structure and function have been studied over the years. However, this analysis was mainly addressed to examine centrioles in a few model organisms, such as Chlamydomonas reinhardtii, Caenorhabditis elegans, Drosophila melanogaster, and some vertebrate cell lines. From these studies emerge a highly conserved organization of the centrioles. However, investigations in different animal groups revealed distinct and sometimes important differences in the architecture of the centrioles [39,40]. Therefore, the analysi...