Because novel environmental conditions alter the selection pressure on genes or entire subgenomes, adaptive and nonadaptive changes will leave a measurable signature in the genomes, shaping their molecular evolution. We present herein a model of the trajectory of plastid genome evolution under progressively relaxed functional constraints during the transition from autotrophy to a nonphotosynthetic parasitic lifestyle. We show that relaxed purifying selection in all plastid genes is linked to obligate parasitism, characterized by the parasite's dependence on a host to fulfill its life cycle, rather than the loss of photosynthesis. Evolutionary rates and selection pressure coevolve with macrostructural and microstructural changes, the extent of functional reduction, and the establishment of the obligate parasitic lifestyle. Inferred bursts of gene losses coincide with periods of relaxed selection, which are followed by phases of intensified selection and rate deceleration in the retained functional complexes. Our findings suggest that the transition to obligate parasitism relaxes functional constraints on plastid genes in a stepwise manner. During the functional reduction process, the elevation of evolutionary rates reaches several new rate equilibria, possibly relating to the modified protein turnover rates in heterotrophic plastids.parasitism | relaxed selection | evolutionary rates | plastid genomes | Orobanchaceae L ineages change over time as they adapt to new environments. Novel conditions determine the selection in genes or cellular genomes and shape their functional and structural evolution. A system well suited to study the evolution of genomic traits in the context of altered selective regimes that is also tractable technically (due to its small size and high copy number) is the plastid genome (plastome). The prime function of plastids is photosynthesis, but this essential plant organelle also produces starch, lipids, amino acids, sulfur compounds, and pigments. As a result of the strong selective pressure on plastid gene function, plastid genomes have a conserved gene content (1; but see ref.2) and their genes functioning in photosynthesis (atp, ndh, pet, psa, psb, ccsA, cemA, ycf3/4, rbcL), transcription, transcript maturation or translation (rpo, matK, rpl, rps, infA), and other pathways (accD, clpP, ycf1, and ycf2) evolve at lower evolutionary rates than nuclear genes (3). However, in eukaryotic lineages such as Apicomplexan pathogens and nongreen plants that independently made the transition from an autotrophic to a parasitic way of life, plastomes have experienced convergent reductions and accelerations of evolutionary rates (4). Although there is a general understanding of the association of the nonphotosynthetic lifestyle with plastome degradation and rate acceleration, the precise trajectory of plastome evolution under progressively reduced function along the way from being a full autotroph to an obligate nonphotosynthetic parasite remains unknown.Parasitic plants are an excellent system for stu...