Recent experimental results have shown that active enzymes can diffuse faster when they are in the presence of their substrates. Fluorescence correlation spectroscopy (FCS), which relies on analyzing the fluctuations in fluorescence intensity signal to measure the diffusion coefficient of particles, has typically been employed in most of the prior studies. However, flaws in the FCS method, due to its high sensitivity to the environment, have recently been evaluated, calling the prior diffusion results into question. It behooves us to adopt complementary and direct methods to measure the mobility of enzymes in solution. Herein, we use a novel technique of direct single-molecule imaging to observe the diffusion of single enzymes. This technique is less sensitive to intensity fluctuations and gives the diffusion coefficient directly based on the trajectory of the enzymes. Our measurements recapitulate that enzyme diffusion is enhanced in the presence of its substrate and find that the relative increase in diffusion of a single enzyme is even higher than those previously reported using FCS. We also use this complimentary method to test if the total enzyme concentration affects the relative increase in diffusion and if enzyme oligomerization state changes during catalytic turnover. We find that the diffusion increase is independent of the total background concentration of enzyme and the catalysis of substrate does not change the oligomerization state of enzymes.