2022
DOI: 10.1140/epjs/s11734-022-00440-w
|View full text |Cite
|
Sign up to set email alerts
|

Matching geometric and expansion characteristics of wild chaotic attractors

Abstract: Wild chaotic attractors exhibit chaotic dynamics with a robustness property that cannot be destroyed with small perturbations. We consider a discrete-time system with the smallest possible dimension, namely, defined by a non-invertible map on the complex plane. For this map, wild chaos has been proven to exist in a small parameter region. Recently, it was conjectured to exist in a much larger region of parameter space, past a so-called backward critical tangency, at which a sequence of pre-images of a critical… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 35 publications
0
0
0
Order By: Relevance