Purpose In Poland, coal is the main fuel used for heat production. Innovative clean coal technologies, which include underground coal gasification (UCG), are widely developed. This paper presents the analysis results of life cycle assessment (LCA) and material flow analysis (MFA) of using synthesis gas from UCG for heat production. The paper presents the results of a comparative analysis of MFA and LCA for four variants of heat production, which differed in the choice of gasifying agent and heat production installations. Methods Environmental analysis was made based on LCA with ReCiPe Midpoint and ReCiPe Endpoint H/A method, which allowed to analyse of different categories of the environmental impact. LCA was performed based on the ISO 14040 standard using SimaPro 8.0 software with Ecoinvent 3.1 database (Ecoinvent 2014). Umberto NXT Universal software was used to develop MFA for heat production. LCA analyses included hard coal from a Polish mine and synthesis gas obtained in the experimental installations in the Central Mining Institute in Poland. Results and discussion MFA performed for technology of utilizing gases from UCG have made it possible to visualize materials and energy flow between different unit processes in the whole technological chain. Moreover, the analyses enabled identification of unit processes with the largest consumption of raw materials, energy and the biggest emissions into the environment. It has been shown that the lowest environmental burden is attributed to the technology, which uses high-pressure chamber with gas turbine in which the synthesis gas from UCG is burned and oxygen was a gasifying agent. Analysis of LCA results showed that the major environmental burden includes greenhouse gas (GHG) emission and the fossil fuels depletion. GHG emission results primarily from the direct emission of CO 2 from gas combustion for heat production and electricity consumption used in gasifying agents preparation phase. Conclusions In order to increase the environmental efficiency of heat production technology using UCG, the most important activity to be considered is limitation of dust-gas emissions, including primarily CO 2 removal process and efficiency increase of the installation, which is reflected in the reduction of coal consumption. It is important to highlight that this is the first attempt of MFA and LCA of heat production from UCG gas. Since no LCA has ever been conducted on the heat production from underground coal gasification, this study is the first work about LCA of the heat production from UCG technology. This is the first approach which contains a whole chain of unconventional heat production including preparation stages of gasifying agents, underground coal gasification, gas purification and heat production.