Given that the heat treatment states of the base metal have a great influence on the surfacing repair layer, this paper carried out a feasibility study for the remanufacturing of the failed cutter rings of TBM disc cutters with uniform wear (hereinafter referred to as normally-worn ring) using the gas metal arc welding technology (GMAW). Firstly, this paper developed a heat treatment process route for H13 steel cutter rings. Secondly, the heat treatment process is numerically analyzed based on the developed route, and the rationality of the route is verified from the distribution characteristics of temperature, phase, and stress fields. Subsequently, heat treatment tests were carried out, and the physical and mechanical properties of the base metal samples prepared under laboratory conditions were evaluated respectively and systematically. Based on the comprehensive performance evaluation value calculated by the weighted comparative analysis method, it was clear that the comprehensive performance of the quenched base metal samples was 7.6% higher than that of the engineering cutter ring interior. Therefore, it is reasonable to replace the failed engineering cutter rings repaired under laboratory conditions with the prepared samples as economical alternatives. Finally, the remanufacturing of the base metal samples using GMAW was carried out, and then the remanufacturing performance of the base metal samples was analyzed. The study concluded that the comprehensive performance of the surfacing repair layer was slightly lower than that of the engineering cutter ring edge (4.1%), thus proving that the idea of surfacing remanufacturing of the normally-worn ring proposed in this paper was basically feasible.