This study explores enhancing decision-making processes in inventory management and production operations by integrating a developed system. The proposed solution improves the decision-making process, managing the material supply of the product and inventory management in general. Based on the researched issues, the shortcomings of modern enterprise resource planning systems (ERPs) were considered in the context of Warehouse 4.0. Based on the problematic areas of material accounting in manufacturing enterprises, a typical workplace was taken as a basis, which creates a gray area for warehouse systems and does not provide the opportunity of quality-managing the company’s inventory. The main tool for collecting and processing data from the workplace was the neural network. A mobile application was proposed for processing and converting the collected data for the decision-maker on material management. The YOLOv8 convolutional neural network was used to identify materials and production parts. A laboratory experiment was conducted using 3D-printed models of commercially available products at the SmartTechLab laboratory of the Technical University of Košice to evaluate the system’s effectiveness. The data from the network evaluation was obtained with the help of the ONNX format of the network for further use in conjunction with the C++ OpenCV library. The results were normalized and illustrated by diagrams. The designed system works on the principle of client–server communication; it can be easily integrated into the enterprise resource planning system. The proposed system has potential for further development, such as the expansion of the product database, facilitating efficient interaction with production systems in accordance with the circular economy, Warehouse 4.0, and lean manufacturing principles.