Chemical mechanical polishing (CMP) is one of the most essential processes in semiconductor manufacturing. Its importance becomes highly underscored at the advanced device toward sub 14 nm scaling. The fundamental mechanism of CMP is to create soften surface layer by chemical reaction and then, mechanical force by abrasive particles remove soften layer. The role of CMP is not only material removal, but also planarization, surface smoothening, uniformity control, defect reduction and more. Moreover, semiconductor yield enhancement is sensitively influenced by CMP processing. Surface scratching, which is generated by CMP in nature, is considered as 'killer defect' in semiconductor manufacturing. Hence, to achieve proper CMP performance without surface scratching, understanding and development of abrasive particles are crucially important. In this chapter, CMP fundamentals, applications and challenges associated with abrasive particle technology including synthesis (up to nanoparticle scale), tribochemical reaction, abrasive surface zeta potential behavior, particle size and its distribution will be discussed.