Currently, the task of designing large structures of space antennas is becoming increasingly important due to active research and development in the area of creating remote sensing and communication satellites. Designing such structures is a complicated task due to geometric features, a large number of joints, compactness requirements, as well as operating conditions of the outer space. These factors require special methods for assessing the workability of these structures. This paper presents the results of simulation and experimental studies aimed at creating transformable antenna reflectors. The results of choosing general structural layouts are considered. It is noted that the main reason for the reflector shape distortion is non-uniform heating by the solar radiation and radiation fluxes coming from the Earth. The paper presents the results of numerical modeling of temperature and stress-strain state of transformable antenna reflectors from metallic mesh sheet meeting the requirements for operating on the geostationary orbit.