Purpose
The orbital floor is frequently involved in head trauma. Current evidence on the use of reconstruction materials for orbital floor repair is inconclusive. Accordingly, this study aimed to compare the impact of polydioxanone (PDS) foil thickness on reconstruction of the orbital geometry after isolated orbital floor fractures.
Methods
Standardized isolated orbital floor fractures were symmetrically created in 11 cadaver heads that provided 22 orbits. PDS foils with thicknesses of 0.25–0.5 mm were inserted. Computed tomography (CT) scans of the native, fractured, and reconstructed orbits were obtained, and orbital volume, orbital height, and foil bending were measured.
Results
Orbital volume and height significantly (p < 0.01) increased after the creation of isolated orbital floor fractures and significantly (p = 0.001) decreased with overcorrection of the orbital geometry after orbital floor reconstruction with PDS 0.25 mm or PDS 0.5 mm. The orbital geometry reconstruction rate did not differ significantly with respect to foil thickness. However, compared to PDS 0.5 mm, the use of PDS 0.25 mm resulted in quantitatively higher reconstructive accuracy and a restored orbital volume that did not significantly differ from the initial volume.
Conclusion
Orbital floors subjected to isolated fractures were successfully reconstructed using PDS regardless of foil thickness, with overcorrection of the orbital geometry. Due to its lower flexural stiffness, PDS 0.25 mm appeared to provide more accurate orbital geometry reconstruction than PDS 0.5 mm, although no significant difference in reconstructive accuracy between PDS 0.25 mm and PDS 0.5 mm was observed in this cadaveric study.