Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Fabricating thermoelectric generators (TEGs) using the screen-printing process has advantages, including mass production, device scalability, and system applicability. However, the thick film formed through the process typically has low film density, and reduced performance, because of the presence of pores in the film created by the vaporization of the resin during hightemperature annealing. During the soldering process used for thermoelectric module fabrication, the printed solder infiltrates into the screen-printed electrodes through the micropores in the electrodes, causing cracks of the electrode film and an increase in resistivity. In this paper, an ultraviolet radiation (UV)-curable process for screen-printed electrodes is reported. The paste for the electrodes is synthesized by mixing Ag flakes that can be cured at low temperature with a UV resin. Scanning electron microscope images show that the UV-curing process significantly reduces pores and thereby results in a smooth-surfaced electrode layer. The film density after crystallization is also enhanced. TEGs composed of 72 couples with UV-curable Ag electrodes generate a high power density of ≈6.69 mW cm −2 at a temperature difference of 25 °C; the device resistance is ≈0.75 Ω, and the figure of merit of the device is recorded to be 0.57, which is the highest among the printed TEGs.
Fabricating thermoelectric generators (TEGs) using the screen-printing process has advantages, including mass production, device scalability, and system applicability. However, the thick film formed through the process typically has low film density, and reduced performance, because of the presence of pores in the film created by the vaporization of the resin during hightemperature annealing. During the soldering process used for thermoelectric module fabrication, the printed solder infiltrates into the screen-printed electrodes through the micropores in the electrodes, causing cracks of the electrode film and an increase in resistivity. In this paper, an ultraviolet radiation (UV)-curable process for screen-printed electrodes is reported. The paste for the electrodes is synthesized by mixing Ag flakes that can be cured at low temperature with a UV resin. Scanning electron microscope images show that the UV-curing process significantly reduces pores and thereby results in a smooth-surfaced electrode layer. The film density after crystallization is also enhanced. TEGs composed of 72 couples with UV-curable Ag electrodes generate a high power density of ≈6.69 mW cm −2 at a temperature difference of 25 °C; the device resistance is ≈0.75 Ω, and the figure of merit of the device is recorded to be 0.57, which is the highest among the printed TEGs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.