Introduction
Although Ethiopia has already achieved a remarkable progress in reducing under-five mortality in the last decades, undernutrition among children is still a common problem in this country. Socioeconomic inequalities in health outcomes in Ethiopia have been thus of focus in academia and policy spheres for a while now. This study provides new evidence on child undernutrition inequalities in Ethiopia using longitudinal perspective.
Method
Using three round of household panel survey (from 2012 to 2016), we use concentration index (associated curve), different mobility index approaches for measuring inequalities and its dynamics, and decomposition method to identify contributing factors.
Results
In all concentration index computing approaches and socioeconomic status ranking variables, the concentration indices are significant with negative value. This implies that in either of short-run or long-run inequality estimates, the burden of unequal distribution of undernutrition remains on the poor with significant difference across regions. While employing different SES ranking variables, the difference in the concentration indices is only found significant in case of Height-for-age Z-score. It signifies that relatively higher inequality is measured using consumption as ranking variable. Significant difference in inequality is also shown across regions. With respect to dynamics of inequalities, results on mobility indices computed based on Allanson et al. (Longitudinal analysis of income-related health inequality. Dundee Discussion Working Paper No. 214, 2010) approach show that inequality remain stable (persistent) in Height-for- age Z-score, and reduction of inequality in Weight-for- age Z-score while in case of Weight-for- height Z-score, there is no clear trend over subsequent waves. Results on decomposition of inequalities show that the major contributors are wealth index, consumption and mother’s education.
Conclusion
The argument of the choice of welfare indicator can have a large and significant impact on measured socioeconomic inequalities in a health variable which it depends on the variable examined. Employing longitudinal perspective rather than weighted average of cross-sectional data is justifiable to see the dynamic of inequality in child malnutrition. In both socioeconomic status ranking variables, the bulk of inequality in malnutrition is caused by inequality in socioeconomic status in which it disfavours the poor in both cases. This calls for enhancing the policy measures that narrow socioeconomic gaps between groups in the population and targeting on early childhood intervention and nutrition sensitive.