<b><i>Background:</i></b> Patient blood management (PBM) is a multidisciplinary and patient-centered treatment approach, comprising the detection and treatment of anemia, the minimization of blood loss, and the rational use of allogeneic transfusions. Pregnancy, delivery, and the puerperium are associated with increased rates of iron deficiency and anemia, which correlates with worse maternal and fetal outcomes and places pregnant women at increased risk of obstetric hemorrhage. <b><i>Summary:</i></b> Early screening for iron deficiency before the onset of anemia, as well as the use of oral and intravenous iron to treat iron deficiency anemia, has been shown to be beneficial. Anemia in pregnancy and the puerperium should be treated according to a staged regimen, administering either iron alone or in combination with an <i>off-label</i> use of human recombinant erythropoietin in selected patients. This regimen should be tailored to the needs of each individual patient. Postpartum hemorrhage (PPH) accounts for up to one-third of maternal deaths in both developing and developed countries. Bleeding complications should be anticipated and blood loss reduced by interdisciplinary preventive measures and individually tailored care. It is recommended that facilities have a PPH algorithm, primarily focusing on prevention through use of uterotonics, but also incorporating early diagnosis of the cause of bleeding, optimization of hemostatic conditions, timely administration of tranexamic acid, and integration of point-of-care tests to support the guided substitution of coagulation factors, alongside standard laboratory tests. Additionally, cell salvage has proven beneficial and should be considered for various indications in obstetrics including hematologic disturbances, as well as various forms of placental disorders. <b><i>Key Message:</i></b> This article reviews PBM in pregnancy, delivery, and the puerperium. The concept comprises early screening and treatment of anemia and iron deficiency, a transfusion and coagulation algorithm during delivery, as well as cell salvage.