Background Hydraulic fracturing, a method used in Northeastern British Columbia (Canada) to extract natural gas, can release contaminants with potential deleterious health effects on fetal development. To date, the association between hydraulic fracturing activity and birth outcomes has not been evaluated in this region. Objective To evaluate the association between the hydraulic fracturing well density/proximity and birth outcomes (birthweight, head circumference, preterm birth and small for gestational age (SGA)). Methods We used birth records from the Fort St John hospital between December 30, 2006 and December 29, 2016 (n = 6333 births). To estimate gestational exposure, we used inverse distance weighting (IDW) to calculate the density/proximity of hydraulic fracturing wells to pregnant women's postal code centroid. For each birth, we calculated three IDWs using 2.5, 5, and 10 km buffer zones around women's postal code centroid. We used linear and logistic regressions to evaluate associations between quartiles of postal code well density/proximity and birth outcomes, controlling for relevant covariates. Results No associations were found between postal code well density/proximity and head circumference or SGA. A negative association was found between postal code well density/proximity and birthweight for infants born to women in the 2nd quartile of the 10 km buffer (β [95% confidence interval (CI)]: −47.28 g [−84.30; −10.25]), and in the 2nd (β [95% CI]: −40.87 g [−78.01; −3.73]) and 3rd (β [95% CI]: −42.01 g [−79.15; −4.87]) quartiles of the 5 km buffer. Increased odds of preterm birth were observed among women in the 2nd quartile of the 2.5 km buffer (odds ratio (OR) [95% CI]: 1.60 [1.30; 2.43]). Conclusions This is the first epidemiological study in Northeastern British Columbia evaluating associations between hydraulic fracturing and health outcomes. Our results show inconsistent patterns of association between hydraulic fracturing, preterm birth and reduced birthweight, and effect estimates did not match expected dose-response relationships.