Genetic defects of GNAS, the imprinted gene encoding the stimulatory G protein αsubunit, are responsible for multiple diseases. Abnormal GNAS imprinting causes pseudohypoparathyroidism type 1B (PHP1B), a prototype of mammalian end-organ hormone resistance. Hypomethylation at the maternally methylated GNAS A/B region is the only shared defect in PHP1B patients. In autosomal dominant (AD) PHP1B kindreds, A/B hypomethylation is associated with maternal microdeletions at either the GNAS NESP55 differentially methylated region or the STX16 gene located ~170 kb upstream. Functional evidence is meager regarding the causality of these microdeletions. Moreover, the mechanisms linking A/B methylation and these putative imprinting control regions (ICRs), NESP-ICR and STX16-ICR, remain unknown. Here, we generated a human embryonic stem cell model of AD-PHP1B by introducing ICR deletions using CRISPR/Cas9. Using this model, we showed that NESP-ICR is required for methylation and transcriptional silencing of A/B on the maternal allele. We also found that SXT16-ICR is a longrange enhancer of NESP55 transcription, which originates from maternal NESP-ICR. Furthermore, we demonstrated that STX16-ICR is an embryonic stage-specific enhancer enabled by the direct binding of pluripotency factors. Our findings uncover an essential GNAS imprinting control mechanism and advance the molecular understanding of the PHP1B pathogenesis.