Diet-induced epigenetic modifications in early life could contribute to later health problem. However, it remains to be established whether high-fat diet (HFD) consumption during pregnancy and the suckling period could predispose the offspring to stroke. The present study investigated the influence of maternal HFD on stroke outcome in adult offspring. Female Sprague-Dawley rats were fed a normal diet (5.3% fat) or a HFD (25.7% fat), just before pregnancy until the end of lactation. Male offspring were fed with the control diet or the HFD after weaning, to form four groups (control offspring fed with the control diet (C/C) or the HFD (C/HFD) and offspring of fat-fed dams fed with the control diet (HFD/C) or the HFD (HFD/HFD)). The offspring received middle cerebral artery occlusion on day 120 followed by behavioral tests (neurological deficit score, staircase-reaching test and beam-traversing test), and infarct volumes were also calculated. We found that the HFD/C rats displayed larger infarct volume and aggravated functional deficits (all P!0.05), compared with the C/C rats, indicating that maternal fat-rich diet renders the brain more susceptible to the consequences of ischemic injury. Moreover, maternal HFD offspring displayed elevated glucocorticoid concentrations following stroke, and increased glucocorticoid receptor expression. In addition, adrenalectomy reversed the effects of maternal HFD on stroke outcome when corticosterone was replaced at baseline, but not ischemic, concentrations. Furthermore, expression of brain-derived neurotrophic factor (BDNF) in the ipsilateral hippocampus was decreased in the HFD/C offspring (P!0.05), compared with the C/C offspring. Taken together, maternal diet can substantially influence adult cerebrovascular health, through the programming of central BDNF expression and the hypothalamic-pituitary-adrenal axis.