This study investigates relations of maternal N-3 and N-6 polyunsaturated fatty acids (PUFA) intake during pregnancy with offspring body mass index (BMI), height z-score and metabolic risk (fasting glucose, C-peptide, leptin, lipid profile) during peripuberty (8-14 years) among 236 mother-child pairs in Mexico. We used food frequency questionnaire data to quantify trimester-specific intake of N-3 alpha-linolenic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); N-6 linoleic acid and arachidonic acid (AA); and N-6:N-3 (AA:EPA+DHA), which accounts for the fact that the two PUFA families have opposing effects on physiology. Next, we used multivariable linear regression models that accounted for maternal education and parity, and child's age, sex and pubertal status, to examine associations of PUFA intake with the offspring outcomes. In models where BMI z-score was the outcome, we also adjusted for height z-score. We found that higher second trimester intake of EPA, DHA and AA were associated with lower offspring BMI and height z-score. For example, each 1-s.d. increment in second trimester EPA intake corresponded with 0.25 (95% CI: 0.03, 0.47) z-scores lower BMI and 0.20 (0.05, 0.36) z-scores lower height. Accounting for height z-score in models where BMI z-score was the outcome attenuated estimates [e.g., EPA: -0.16 (-0.37, 0.05)], suggesting that this relationship was driven by slower linear growth rather than excess adiposity. Maternal PUFA intake was not associated with the offspring metabolic biomarkers. Our findings suggest that higher PUFA intake during mid-pregnancy is associated with lower attained height in offspring during peripuberty. Additional research is needed to elucidate mechanisms and to confirm findings in other populations.