2022
DOI: 10.1007/s12648-022-02464-3
|View full text |Cite
|
Sign up to set email alerts
|

$$\mathcal{H}_{\infty }$$ weight learning of dynamic neural networks with delay and reaction–diffusion

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 43 publications
0
1
0
Order By: Relevance
“…Remark It is noteworthy that, by denoting 39 false(tfalse)=0tnormalΩνTfalse(s,σfalse)Sνfalse(s,σfalse)ds.15emdσ0tnormalΩdTfalse(s,σfalse)dfalse(s,σfalse)ds.15emdσ,$$ \mathscr{H}(t)=\frac{\int_0^t{\int}_{\Omega}{\nu}^T\left(s,\sigma \right) S\nu \left(s,\sigma \right) ds\kern.15em d\sigma}{\int_0^t{\int}_{\Omega}{d}^T\left(s,\sigma \right)d\left(s,\sigma \right) ds\kern.15em d\sigma}, $$ one can rewrite () as false(false)γ2$$ \mathscr{H}\left(\infty \right)\le {\gamma}^2 $$. When νfalse(s,tfalse)$$ \nu \left(s,t\right) $$ and dfalse(s,tfalse)$$ d\left(s,t\right) $$ are independent of the space value s, () becomes 0νTfalse(tfalse)Sνfalse(tfalse)dtγ20dTfalse(tfalse)dfalse(tfalse)dt,$$ {\int}_0^{\infty }{\nu}^T(t) S\nu (t) dt\le {\gamma}^2{\int}_0^{\infty }{d}^T(t)d(t) dt, $$ and the concept of $$ {\mathscr{H}}_{\infty } $$ stability corresponds to that discussed in References 40‐42.…”
Section: Preliminariesmentioning
confidence: 99%
“…Remark It is noteworthy that, by denoting 39 false(tfalse)=0tnormalΩνTfalse(s,σfalse)Sνfalse(s,σfalse)ds.15emdσ0tnormalΩdTfalse(s,σfalse)dfalse(s,σfalse)ds.15emdσ,$$ \mathscr{H}(t)=\frac{\int_0^t{\int}_{\Omega}{\nu}^T\left(s,\sigma \right) S\nu \left(s,\sigma \right) ds\kern.15em d\sigma}{\int_0^t{\int}_{\Omega}{d}^T\left(s,\sigma \right)d\left(s,\sigma \right) ds\kern.15em d\sigma}, $$ one can rewrite () as false(false)γ2$$ \mathscr{H}\left(\infty \right)\le {\gamma}^2 $$. When νfalse(s,tfalse)$$ \nu \left(s,t\right) $$ and dfalse(s,tfalse)$$ d\left(s,t\right) $$ are independent of the space value s, () becomes 0νTfalse(tfalse)Sνfalse(tfalse)dtγ20dTfalse(tfalse)dfalse(tfalse)dt,$$ {\int}_0^{\infty }{\nu}^T(t) S\nu (t) dt\le {\gamma}^2{\int}_0^{\infty }{d}^T(t)d(t) dt, $$ and the concept of $$ {\mathscr{H}}_{\infty } $$ stability corresponds to that discussed in References 40‐42.…”
Section: Preliminariesmentioning
confidence: 99%