In this research, a novel position trajectory tracking control architecture has been constructed for an underactuated quadrotor unmanned aerial vehicle (UAV) with uncertainties and disturbances. Primarily, we divide the whole dynamic system into an underactuated position subsystem and a fully-actuated attitude subsystem. For the position subsystem, we have transformed it into a fully-actuated system by constructing a virtual PD controller, and this controller can render the position tracking error asymptotically stable. Besides, based on the position controller designed for quadrotor UAV, the desired attitudes, i.e. roll, pitch and yaw angles, will be derived. Next, as for the attitude subsystem which is sensitive to uncertainties and external disturbances, a novel robust attitude constraint-following controller is proposed for this aircraft, this attitude controller can not only guarantee the uniform boundedness and uniform ultimate boundedness of constraint deviation, but also does not requiring more information of uncertainties and disturbances except their bounds. Eventually, the simulations have demonstrated a sound tracking performance of our proposed control strategy for quadrotor UAV even in the presence of uncertainties and disturbances.