“…Some of the notable contributions in this volume happen to have successfully addressed such topics of fractional calculus and related mathematical analysis as (for example) operational matrix of fractional-order derivatives for solving systems of fractional differential equations via Legendre wavelets, Hermite polynomial approach for solving the SIR model of epidemics, the extremal solution to conformable fractional differential equations involving integral boundary condition, approximate controllability of sub-diffusion equation with impulsive condition, incomplete hypergeometric functions and incomplete Riemann-Liouville fractional integral operators, random coupled Hilfer and Hadamard fractional differential systems in generalized Banach spaces, uniqueness and existence of approximate solution to initial value problem for fractional differential equation of variable order involving the derivative arguments on the half-axis, solvability of a mixed problem for a high-order partial differential equation with fractional derivatives with respect to time, with Laplace operators with spatial variables and nonlocal boundary conditions in Sobolev classes, fractional-calculus connections between Mittag-Leffler functions, impact of fractional calculus on correlation coefficient between available potassium and spectrum data in ground hyperspectral and Landsat 8 image, efficacy of the post-exposure prophylaxis and of the HIV latent reservoir in HIV infection, fractional-order unknown inputs fuzzy observer for Takagi-Sugeno systems with unmeasurable premise variables, stability results for implicit fractional pantograph differential equations via ϕ-Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition, and so on. In connection with such works as (for example) [4,18], and indeed also many papers included in the published volumes [23][24][25][26], a recent survey-cum-expository review article [27] will be potentially useful in order to motivate further researches and developments involving a wide variety of operators of basic (or q-) calculus and fractional q-calculus and their widespread applications in Geometric Function Theory of Complex Analysis.…”