Over the last few decades, a number of CFD models have been dedicated to increasing the understanding of the decarburization processes in steelmaking. However, these processes are highly complex with large variations in time and length, and this makes the systems extremely demanding to simulate. Several reports have been published where parts of the processes have been investigated numerically, but to date no models have been presented that can handle the entire complexity of the processes. Here, a review of the research performed on the subject from 1998 to 2016 is given. A table summarizing the models used and the key focus of the studies is given, and it can be concluded that the effort put in so far to investigate the decarburization in steelmaking is substantial, but not complete. The currently available numerical models give an insight into process parameters such as reactions, mixing time, temperature distribution and thermal losses, off-gas post combustion and de-dusting, and also nozzle configuration. With the recent developments in numerical modeling and the increase in hardware capability, the future of simulation and modeling of the decarburization processes in steelmaking seems bright.