Owing to the shortage of rare-earth magnetic materials, various methods are being examined to reduce the use of magnets. One of these is a consequent pole. The consequent pole model can reduce the use of magnets by 50% using only one pole of the magnet and replacing the other pole with iron. However, the consequent pole has the disadvantage of generating back EMF asymmetry and a high cogging torque. In this study, an intersect magnet consequent pole structure is proposed to overcome the disadvantages of the existing consequent pole. Two methods have been proposed to improve axial leakage magnetic flux caused by the intersect magnet consequent pole structure. Finally, we propose a method to reduce the cogging torque and minimize the use of magnets with the same performance standard. For motor design, two-dimensional and three-dimensional finite element analysis was used, and comparative analysis was performed via simulations for several models. The existing model and the final model were compared and verified.