When a contaminated liquid evaporates from within a porous material, the impurities or dirt accumulate and deposit within the pore space. This occurs during the cleaning of filters and fouling of textiles, and is related to the ‘coffee-ring’ problem. To investigate how and where dirt is deposited in the pore space, we present a model for the motion of an evaporation front through a porous material, and the related accumulation, transport, and deposition of dirt, assuming that the liquid remains stationary. For physically relevant parameters, vapour transport out of the porous material is quasi-steady and we derive a single ordinary differential equation describing the motion of the evaporation front in time. Model solutions exhibit spatially non-uniform profiles of the deposited dirt-layer thickness through the porous material. The dirt accumulation and evaporation problems are coupled: deposited dirt hinders vapour transport through the porous material, slowing the evaporation. We identify two scenarios in which the porous material becomes clogged with dirt. Accumulation of suspended dirt at the evaporating interface along with slow dirt diffusion results in the deposited dirt layers clogging the pores at the evaporating interface, halting the drying and trapping liquid in the porous material. Alternatively, slow dirt deposition results in the suspended dirt being pushed far into the porous material by the evaporation, eventually leaving only dirt (with no liquid) in the pore space. We investigate the dynamics of both clogging scenarios, characterising the parameter regimes for which each occurs. Both clogging scenarios must be avoided in practice since they may be detrimental to future filter efficacy or textile breathability.