This paper focuses on analyzing asymmetric and open-phase fault modes in symmetrical two-channel six-phase induction machines while considering the spatial harmonics of the electromagnetic field in the air gap. Under sinusoidal power supply, the magnetomotive force exhibits high-order spatial harmonics, which arise due to the winding design. The interaction between these spatial harmonics and the first-time harmonic of the power supply results in the presence of high-order harmonics in the current and electromagnetic torque. The harmonic content of the currents and torque under asymmetric and open-phase operation mode while taking into account spatial harmonics is analyzed. It is shown that in asymmetrical modes, in addition to the 5th, 7th, 11th, and 13th higher harmonics found in symmetrical modes, harmonics in multiples of the 3rd are introduced into the stator winding currents. As for the composition of the electromagnetic torque in asymmetrical modes, all even harmonics are present, in addition to the 6th and 12th harmonics that are characteristic of symmetrical modes. A mathematical model of the six-phase induction machine has been developed using the average voltages within the integration step method. Its adequacy was verified by comparing the simulation results with the experimental results obtained from the developed prototype.