Background
Community-based mask wearing has been shown to reduce the transmission of SARS-CoV-2. However, few studies have conducted an economic evaluation of mask mandates, specifically in public transportation settings. This study evaluated the cost-effectiveness of implementing mask mandates for subway passengers in the United States by evaluating its potential to reduce COVID-19 transmission during subway travel.
Materials and methods
We assessed the health impacts and costs of subway mask mandates compared to mask recommendations based on the number of infections that would occur during subway travel in the U.S. Using a combined box and Wells-Riley infection model, we estimated monthly infections, hospitalizations, and deaths averted under a mask mandate scenario as compared to a mask recommendation scenario. The analysis included costs of implementing mask mandates and COVID-19 treatment from a limited societal perspective. The cost-effectiveness (net cost per averted death) of mandates was estimated for three different periods based on dominant SARS-CoV-2 variants: Alpha, Beta, and Gamma (November 2020 to February 2021); Delta (July to October 2021); and early Omicron (January to March 2022).
Results
Compared with mask recommendations only, mask mandates were cost-effective across all periods, with costs per averted death less than a threshold of $11.4 million (ranging from cost-saving to $3 million per averted death). Additionally, mask mandates were more cost-effective during the early Omicron period than the other two periods and were cost saving in January 2022. Our findings showed that mandates remained cost-effective when accounting for uncertainties in input parameters (e.g., even if mandates only resulted in small increases in mask usage by subway ridership).
Conclusions
The findings highlight the economic value of mask mandates on subways, particularly during high virus transmissibility periods, during the COVID-19 pandemic. This study may inform stakeholders on mask mandate decisions during future outbreaks of novel viral respiratory diseases.