2018
DOI: 10.1101/451716
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Mathematical Modeling Identifies the Role of Adaptive Immunity as a Key Controller of Respiratory Syncytial Virus (RSV) Titer in Cotton Rats

Abstract: Respiratory syncytial virus (RSV) is a common virus that can have varying effects ranging from mild cold-like symptoms to mortality depending on the age and immune status of the individual. We combined mathematical modeling using ordinary differential equations (ODEs) with measurement of RSV infection kinetics in primary well differentiated human airway epithelial (HAE) cultures in vitro and in immunocompetent and immunosuppressed cotton rats to glean mechanistic details that underlie RSV infection kinetics in… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 36 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?