2019
DOI: 10.1007/978-3-030-14987-1_9
|View full text |Cite
|
Sign up to set email alerts
|

Mathematical Modeling of Deformation of Self-stress Rock Mass Surrounding a Tunnel

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
2
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 9 publications
0
2
0
3
Order By: Relevance
“…In [41] a classical model (based on the model of Jaeger J.C. [42]) is presented for clastic rock, which is capable of describing the behavior (dispersion) of the dynamic modulus of elasticity in accordance with a power law on the basis of physically substantiated relations. Gradient models (see for example [43,44]) can be considered as a non-classical model capable of reflecting the variance of Young's modulus. Gradient models allow to take into account the heterogeneity of the material structure when describing the change in its elastic characteristics.…”
Section: Discussionmentioning
confidence: 99%
“…In [41] a classical model (based on the model of Jaeger J.C. [42]) is presented for clastic rock, which is capable of describing the behavior (dispersion) of the dynamic modulus of elasticity in accordance with a power law on the basis of physically substantiated relations. Gradient models (see for example [43,44]) can be considered as a non-classical model capable of reflecting the variance of Young's modulus. Gradient models allow to take into account the heterogeneity of the material structure when describing the change in its elastic characteristics.…”
Section: Discussionmentioning
confidence: 99%
“…The model described in [25][26][27] was used to solve some boundary problems with regard to different properties of rocks, and to describe the rock mass property to accumulate and release elastic energy. Modeling of unstable deformation with regard to internal selfbalancing stresses concentrated in a finite area in rock mass in the vicinity of an arch crosssection tunnel was for the first time undertaken in [28].…”
Section: Mathematical Modelmentioning
confidence: 99%
“…Объемная подвижность -фундаментальное свойство блочной среды [Kocharyan, Spivak, 2003]. Гранулярное течение может не иметь структурного выражения, что Blekhman, 1994;Bobryakov et al, 2010Bobryakov et al, , 2015Bogdanov, Skvortsov, 1992;Budkov, Ostapchuk, 2013;Bykov, 1999;Garagash, 1982Garagash, , 2006Garagash, Nikolaevsky, 1989Gol'din, 2002Gol'din, , 2005Kaibyshev, 2000;Kaibyshev, Pshenichnyuk, 1999;Kosykh, 2008Kosykh, , 2015Kocharyan, 2016;Kocharyan, Spivak, 2003;Lavrikov, Revuzhenko, 1994, 2015, 2019a, 2019bLavrikov et al, 2008;Parton, 2020;Polyakov, 2001;Pospelov, 1972;Psakhie et al, 2010;Revuzhenko, 2000Revuzhenko, , 2003Revuzhenko, , 2013Revuzhenko et al, 1997;Ruzhich, 1997;Sadovsky, 1989;Sadovsky et al, 1988;Sibiryakov, Deev, 2008;Spivak, Kishkina, 2010;Stroganov et al, 2002;Hellan, 1988;Shvab, Martsenko, 2011;Behringer et al, 1999;Cambell, 1990;Drake, 1990;Jullien, 1992;…”
Section: рис 21unclassified
“…При этом скорость накопления деформации тем выше, чем ближе статическая нагрузка к предельной [Adushkin et al, 2009;Kocharyan et al, 2004]. Этот вывод находит подтверждение в численном моделировании [Lavrikov, Revuzhenko, 2019a, 2019bJing, Stephansson, 2007], которое показало, что периодические деформации способны приводить к необратимым изменениям внутренней структуры геосреды и к длительному накоплению упругой энергии, называемой скрытой, собственной, или латентной [Bogomolov et al, 2000;Kosykh V.P., Kosykh P.V, 2017;Kuksenko et al, 2003;Lavrikov, Revuzhenko, 2016;Ponomarev, 2008Ponomarev, , 2011Sibiryakov, Podberezhny, 2006].…”
Section: рис 25 сетка напряжений (стрессовые цепочки)unclassified
See 1 more Smart Citation