2020
DOI: 10.1088/1742-6596/1479/1/012083
|View full text |Cite
|
Sign up to set email alerts
|

Mathematical modeling of hydrophysical processes for water with complex bottom geometry

Abstract: The paper covers the development and research of computational structure for mathematical modelling of hydrobiological processes for water with complex bottom geometry, based on the modern information technologies and computational methods. The models used in modelling take into account following: microturbulent diffusion; gravitational settling of pollutants; plankton populations nonlinear interaction; the salinity impact, temperature. The scheme with weights was proposed for discretization of the developed m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 9 publications
0
2
0
Order By: Relevance
“…Viterbo et al ( 2019) proposed a spatial modeling framework for multi-altitude satellite constellations using a Poisson Cox point process. The authors developed a mathematical model that considers the inhomogeneous distribution of satellites at different altitudes (Okati & Riihonen, 2022) (Sukhinov et al, 2020) (Bondur et al, 2022). The proposed model enabled the analysis of coverage and interference in multi-altitude LEO satellite networks (Mirza & Khan, 2020).…”
Section: Introductionmentioning
confidence: 99%
“…Viterbo et al ( 2019) proposed a spatial modeling framework for multi-altitude satellite constellations using a Poisson Cox point process. The authors developed a mathematical model that considers the inhomogeneous distribution of satellites at different altitudes (Okati & Riihonen, 2022) (Sukhinov et al, 2020) (Bondur et al, 2022). The proposed model enabled the analysis of coverage and interference in multi-altitude LEO satellite networks (Mirza & Khan, 2020).…”
Section: Introductionmentioning
confidence: 99%
“…Problem statement. The Navier-Stokes and continuity equations are used to describe the dynamics of a sea with a lateral surface ∑, variable depth in the Cartesian coordinate system, with the axis pointing vertically down, the axis pointing north, and the axis pointing east [5]:…”
mentioning
confidence: 99%