The alterations in the microhardness of a titanium alloy Ti85.85Al6.5Zr4Sn2Nb1Mo0.5Si0.15 subjected to laser treatment were investigated. Laser processing consists of a series of pulses with durations 20 ns. We used various methods of laser processing, which differed in power density, wavelength, geometrical pattern of irradiation and so on. The dependences of the microhardness on the load on the indenter were found. The laser processing modes providing the increased microhardness are determined. The investigations were carried out at loads from 0.49 N to 4.9 N, with maximum indentation depth of the Vickers pyramid up to 12 μm. Vickers microhardness can be increased by 20 – 40 %. At the same time, the plastic properties of the hardened layer are improved. The probability of crack formation during indentation of the initial alloy increased with a load on the indenter and reached 0.52 for a load of 4.9 N. In two of the treated areas of the three presented, crack formation was not recorded at any load. The mechanisms of hardening of the material surface layer under the influence of a laser pulse are discussed. Using the methods of computational mathematics, the character of sample heating under the influence of a single laser pulse is determined. The perspectives for the development of the proposed processing method are permitting to obtain the optimal mechanical properties of the hardened layer are discussed.