Improving the quality of metal products by crushing of the microstructure of material is one of the promising areas of modern metallurgy. The basic idea consists in refinement the grain structure of the material to sizes less than a micron, i.e. the obtaining of ultrafine-grained (UFG) materials, offering higher strength properties of the material under preservation or a small loss of ductility. Stainless austenitic steel AISI 321 is widely used in all the above areas as well as in chemical, vacuum and nuclear technology. For the obtaining of UFG structure in this material the method of radial-shear rolling is used. For the purpose of identifying the influence of radial-shear rolling on microstructure and mechanical properties of stainless austenitic steel AISI-321, the experiment was conducted where at the radial-shear rolling mill SVP-08 at 800 °C in several passes of the workpieces with a diameter of 30 mm rolled till a diameter of 13 mm with following cooling in water. The analysis of the microstructure of deformed samples showed the presence of equiaxed ultrafine-grained structure in the peripheral areas of the workpiece and the presence of elongated fibrous texture in the axial zone. The strength characteristics of the workpiece has increased more than 2 times, with a slight decrease of plasticity.