Abstract:The operation of solid oxide fuel cell systems with the internal steam reforming of methane over supported nickel catalysts is studied. A mathematical model including heterogeneous chemistry, electro-chemistry, mass transport, and porous media transport is developed to explore the thermal energy coupling between the steam reforming and the electrochemical reactions, independent of the geometrical structure. The role of catalyst activity, inlet temperature, current density, and operating pressure in the system behavior is evaluated. A sensitivity analysis is also performed for different design parameters. The effect of flow configuration on the operation of the system is analyzed and compared based on multiple performance criteria. It is shown that the internal steam reforming within the fuel cell system can result in an overall auto-thermal operation which increases efficiency and simplifies the design process. However, a local cooling effect may occur close to the entrance of the reformer. The use of less active catalysts can cause the slippage of the methane. To reduce both the overall temperature increase across the fuel cell and the local cooling caused by the endothermic steam reforming reactions, increasing the operating pressure is found to be an effective approach. High system efficiency is obtained with increasing the operating pressure or decreasing the current density. The more efficient system is found for a co-flow configuration, while significant temperature gradients near the entrance of the reformer are not desirable for ceramic solid oxide fuel cell systems.