The galvanic corrosion of a bolt joint combining carbon steel end plate and low alloy steel bolt was investigated electrochemically in a 1 M HCl solution. The corrosion parameters of the joint components were used for numerical simulation using Comsol Multiphysics software to analyze the galvanic corrosion behavior at the contact zone between the head bolt and the end plate. In this research work we evaluate the variation of the corrosion rate in the steel end plate considered as the anode, in order to determine the lifetime of the bolted assembly used in steel structures. Three materials (20MnCr5, 42CrMo4, and 32CrMoV13) and three bolts (M12, M16, and M20) were tested in two thicknesses of electrolyte 1 M HCl ( = 1 mm, = 20 mm). It is found that the corrosion rate of the anode part (end plate) is higher for 32CrMoV13 materials and it increases if both diameter of the bolt and thickness of the electrolyte increase (Cr(M20) > Cr(M16) > Cr(M12) and Cr( = 20 mm) > Cr( = 1 mm)). This corrosion rate is higher in the contact area between the bolt head and the end plate, and it decreases if we move away from this contact area.