Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering
DOI: 10.1109/bibe.2000.889601
|View full text |Cite
|
Sign up to set email alerts
|

Mathematical modelling in genetic networks: relationships between the genetic expression and both chromosomic breakage and positive circuits

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
21
0
1

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 17 publications
(22 citation statements)
references
References 11 publications
0
21
0
1
Order By: Relevance
“…Since then, these conjectures have been proven in different frameworks [20,21,22,23,24,25,26,27,28,29]. As for intersecting circuits, we will argue here that beyond the impact that circuits have on the dynamical behaviour of a network, the interactions of circuits via their intersections also account significantly for certain dynamical properties of networks.…”
Section: Circuits and Intersecting Circuitsmentioning
confidence: 91%
See 2 more Smart Citations
“…Since then, these conjectures have been proven in different frameworks [20,21,22,23,24,25,26,27,28,29]. As for intersecting circuits, we will argue here that beyond the impact that circuits have on the dynamical behaviour of a network, the interactions of circuits via their intersections also account significantly for certain dynamical properties of networks.…”
Section: Circuits and Intersecting Circuitsmentioning
confidence: 91%
“…First, as it has been explained in Appendix D, in certain applications [27,45,67,73,74], the state 0 is replaced by −1 by a simple change of variable.…”
Section: Appendix E Relationships Between the Different Formalismsmentioning
confidence: 99%
See 1 more Smart Citation
“…Soit C le nombre de ses composantes fortement connexes comportant un circuit positif, A le nombre de ses attracteurs, K = I/n sa connectivité, c'est-à-dire le rapport entre les nombres I d'interactions et n de gènes, et P le nombre de ses circuits positifs, en ne comptant qu'une fois ceux qui partagent un gène. Nous avons alors les conjectures : 2 P ≥ A ≥ 2 C et A ≥ O(n 1/2 ), valables dans les graphes de type Hopfield, dont les fonctions de transition sont du type majorité pondérée [15][16][17][18][19][20][21][22] et dans les graphes de type Kauffman, dont les fonctions de transition sont toutes les fonctions booléennes possibles [6,[23][24][25]. Dans les réseaux constitués de couches successives de gènes se co-exprimant, on peut montrer que la borne supérieure peut être remplacée par 2 V , où V est le nombre de gènes de la première couche [22].…”
Section: Représentation Mathématique D'un Système Dynamique Complexeunclassified
“…Note that the interaction graph contains only one connected component having at least one (here two) positive circuit of interactions (a circuit is positive if its number of inhibiting edges is even). Hence, from [16,17,18,19,20,21,22], we can expect only 2 1 = 2 fixed configurations for the network dynamics and an upper bound for this number of 2 2 . On Table 3, we see that, if the state of p27 and miRNA 159 are not fixed to particular values, then this number is in reality 2, plus one (resp.…”
Section: Cell Cyclementioning
confidence: 99%