Many cell types produce, remodel, and degrade extracellular matrix in response to diverse stimuli, including mechanical loads. Much is known about the molecular biology and biochemistry of the deposition and degradation of collagen, the primary structural constituent of the extracellular matrix in many tissues, yet there has been little modeling of the associated mechanobiology. For example, we do not have quantitative descriptions, or rules, for the kinetics of collagen turnover as a function of altered mechanical loading and we do not know what governs the orientation and pre-stretch at which new fibers are incorporated within extant tissue. In this paper, we use a constrained mixture theory for growth and remodeling of planar soft tissues to motivate a new experimental approach for investigating competing hypotheses on, for example, how new collagen is aligned by synthetic cells. In particular, because stress and strain fields can be homogeneous in a central region of a biaxially tested tissue, and because biaxial testing admits diverse protocols wherein equal stresses can be imposed in the presence of unequal strains or stresses can be maintained in the absence of strain, we report simulations that illustrate the potential utility of biaxial culture studies. Finally, we describe the associated design of a computer-controlled system that allows intravital microscopic quantification of collagen density, orientation, and cross-linking at various stages during the adaptation of a native tissue or the development of a tissue engineered equivalent, each subjected to well controlled biaxial loads.