There is a range of public health tools and interventions to address the global pandemic of COVID-19. Although it is essential for public health efforts to comprehensively identify which interventions have the largest impact on preventing new cases, most of the modeling studies that support such decision-making efforts have only considered a very small set of interventions. In addition, previous studies predominantly considered interventions as independent or examined a single scenario in which every possible intervention was applied. Reality has been more nuanced, as a subset of all possible interventions may be in effect for a given time period, in a given place. In this paper, we use cloud-based simulations and a previously published Agent-Based Model of COVID-19 (Covasim) to measure the individual and interacting contribution of interventions on reducing new infections in the US over 6 months. Simulated interventions include face masks, working remotely, stay-at-home orders, testing, contact tracing, and quarantining. Through a factorial design of experiments, we find that mask wearing together with transitioning to remote work/schooling has the largest impact. Having sufficient capacity to immediately and effectively perform contact tracing has a smaller contribution, primarily via interacting effects.