Prostate cancer is a widespread and global disease which affects adult males – it is said that key causes of the cancer include age, family history and ethnicity. In this study, the Kaggle prostate cancer dataset, comprising of data of 100 patients with a mixture that both had cancer and did not have cancer, was used alongside machine learning prediction models for the design of unsupervised and automated intelligent systems for the prediction of prostate cancer. Two intelligent systems were designed and underpinned by unsupervised learning algorithms, namely, fuzzy c-means and agglomerative hierarchical clustering, where the various intelligent systems were able to make a prostate cancer prediction with accuracies of over 80% for the various classification metrics, alongside being able to predict an associated stage of the prostate cancer. Both designed intelligent systems offer a complimentary alternative to each other, and their relative merits are discussed in the paper. ry alternative to each other, and their relative merits are discussed in the paper.