Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A proof of a theorem can be said to be pure if it draws only on what is 'close' or 'intrinsic' to that theorem. In this Element we will investigate the apparent preference for pure proofs that has persisted in mathematics since antiquity, alongside a competing preference for impurity. In Section 1, we present two examples of purity, from geometry and number theory. In Section 2, we give a brief history of purity in mathematics. In Section 3, we discuss several different types of purity, based on different measures of distance between theorem and proof. In Section 4 we discuss reasons for preferring pure proofs, for the varieties of purity constraints presented in Section 3. In Section 5 we conclude by reflecting briefly on purity as a preference for the local and how issues of translation intersect with the considerations we have raised throughout this work.
A proof of a theorem can be said to be pure if it draws only on what is 'close' or 'intrinsic' to that theorem. In this Element we will investigate the apparent preference for pure proofs that has persisted in mathematics since antiquity, alongside a competing preference for impurity. In Section 1, we present two examples of purity, from geometry and number theory. In Section 2, we give a brief history of purity in mathematics. In Section 3, we discuss several different types of purity, based on different measures of distance between theorem and proof. In Section 4 we discuss reasons for preferring pure proofs, for the varieties of purity constraints presented in Section 3. In Section 5 we conclude by reflecting briefly on purity as a preference for the local and how issues of translation intersect with the considerations we have raised throughout this work.
This Element introduces a young field, the 'philosophy of mathematical practice'. We first offer a general characterisation of the approach to the philosophy of mathematics that takes mathematical practice seriously and contrast it with 'mathematical philosophy'. The latter is traced back to Bertrand Russell and the orientation referred to as 'scientific philosophy' that was active between 1850 and 1930. To give a better sense of the field, the Element further contains two examples of topics studied, that of mathematical structuralism and visual thinking in mathematics. These are in part presented from a methodological point of view, focussing on mathematics as an activity and questions related to how mathematics develops. In addition, the Element contains several examples from mathematics, both historical and contemporary , to illustrate and support the philosophical points.
This Element discusses the philosophical roles of definitions in the attainment of mathematical knowledge. It first focuses on the role of definitions in foundational programs, and then examines their major varieties, both as regards their origins, their potential epistemic roles, and their formal constraints. It examines explicit definitions, implicit definitions, and implicit definitions of primitive terms, these latter being further divided into axiomatic and abstractive. After discussing elucidations and explications, various ways in which definitions can yield mathematical knowledge are surveyed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.