Two principal ideas have been proposed to explain the primary adaptive function of the sexual process of meiosis: (1) meiosis, and particularly meiotic recombination, is a process for repairing DNA and (2) meiosis, by means of meiotic recombination, is a process for generating beneficial genetic variation among progeny. We review the sexual processes of a number of well-studied microbial eukaryotes: Saccharomyces cerevisiae, Saccharomyces paradoxus, Schizosaccharomyces pombe, Candida albicans, Ustilago maydis, Paramecium tetraurelia, Volvox carteri, Trypanosoma brucei, Neurospora crassa, and Amoebozoa. We indicate aspects of the sexual processes of these microbial eukaryotes, where they have been established, that support the idea that meiosis is primarily a process for repairing DNA. In addition, we review the likely origin of meiotic sex among the microbial eukaryotes. A prokaryotic archaeon is the likely ancestor of eukaryotes. Extant archaea are capable of a sexual process involving syngamy and recombinational repair of genome damage, suggesting that the precursor of eukaryotic meiotic sex may already have been present in the archaeal ancestor of eukaryotes. We believe that attainment of an understanding of the adaptive function of meiotic sex in microbial eukaryotes is of considerable importance since it will likely apply to meiotic sex in eukaryotes generally.