Mating with Multi-Armed Bandits: Reinforcement Learning Models of Human Mate Search
Daniel Conroy-Beam
Abstract:Mate choice requires navigating an exploration-exploitation trade-off. Successful mate choice requires choosing partners who have preferred qualities; but time spent determining one partner’s qualities could have been spent exploring for potentially superior alternatives. Here I argue that this dilemma can be modeled in a reinforcement learning framework as a multi-armed bandit problem. Moreover, using agent-based models and a sample of k = 522 real-world romantic dyads, I show that a reciprocity-weighted Thom… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.