2015
DOI: 10.13001/1081-3810.3068
|View full text |Cite
|
Sign up to set email alerts
|

Matrices of minimum norm satisfying certain prescribed band and spectral restrictions -- an extremal characterization of the discrete periodic Laplacian

Abstract: This paper has been motivated by the curiosity that the circulant matrix ${\rm Circ }(1/2, -1/4, 0, \dots, 0,-1/4)$ is the $n\times n$ positive semidefinite, tridiagonal matrix $A$ of smallest Euclidean norm having the property that $Ae = 0$ and $Af = f$, where $e$ and $f$ are, respectively, the vector of all $1$s and the vector of alternating $1$ and $-1$s. It then raises the following question (minimization problem): What should be the matrix $A$ if the tridiagonal restriction is replaced by a general bandw… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 7 publications
0
0
0
Order By: Relevance