UV photochemistry of a polycyclic aromatic hydrocarbon model, coronene (C(24)H(12)), has been investigated when it is in interaction with water in argon cryogenic matrices, adsorbed on amorphous water ice films, and embedded in solid water. Photoprocessing, carried out at 10 K and λ > 235 nm by means of a high-pressure Hg arc lamp, results in the oxidation and reduction of coronene. These species have been tentatively identified as being the 1,10-dihydroxycoronene and the 1,10-coroquinone by FTIR spectroscopy with the support of isotopic experiments and DFT calculations. These photochemical products most likely form, after hydrogen bonding between C(24)H(12) and H(2)O, through ionization of the PAH and subsequent reactivity with water upon irradiation. Cations, thus generated, react subsequently with water yielding the production of oxygen containing coronene compounds. Such species are of particular interest as they may form in interstellar and early Solar System ices, and are also of astrobiological significance as they could play an important role in processes taking place in most of the living organisms.