The paper presents the electro-optical design of an interferometric inspection system for massive parallel inspection of Micro(Opto)ElectroMechanicalSystems (M(O)EMS). The basic idea is to adapt a micro-optical probing wafer to the M(O)EMS wafer under test. The probing wafer is exchangeable and contains a micro-optical interferometer array: a low coherent interferometer (LCI) array based on a Mirau configuration and a laser interferometer (LI) array based on a Twyman-Green configuration. The interference signals are generated in the micro-optical interferometers and are applied for M(O)EMS shape and deformation measurements by means of LCI and for M(O)EMS vibration analysis (the resonance frequency and spatial mode distribution) by means of LI. Distributed array of 5x5 smart pixel imagers detects the interferometric signals. The signal processing is based on the "on pixel" processing capacity of the smart pixel camera array, which can be utilised for phase shifting, signal demodulation or envelope maximum determination. Each micro-interferometer image is detected by the 140 x 146 pixels sub-array distributed in the imaging plane. In the paper the architecture of cameras with smart-pixel approach are described and their application for massive parallel electrooptical detection and data reduction is discussed. The full data processing paths for laser interferometer and low coherent interferometer are presented.