Rationale: Tuberculosis kills more than 1.5 million people per year, and standard treatment has remained unchanged for more than 30 years. Tuberculosis (TB) drives matrix metalloproteinase (MMP) activity to cause immunopathology. In advanced HIV infection, tissue destruction is reduced, but underlying mechanisms are poorly defined and no current antituberculous therapy reduces host tissue damage. Objectives: To investigate MMP activity in patients with TB with and without HIV coinfection and to determine the potential of doxycycline to inhibit MMPs and decrease pathology. Methods: Concentrations of MMPs and cytokines were analyzed by Luminex array in a prospectively recruited cohort of patients. Modulation of MMP secretion and Mycobacterium tuberculosis growth by doxycycline was studied in primary human cells and TB-infected guinea pigs. Measurements and Main Results: HIV coinfection decreased MMP concentrations in induced sputum of patients with TB. MMPs correlated with clinical markers of tissue damage, further implicating dysregulated protease activity in TB-driven pathology. In contrast, cytokine concentrations were no different. Doxycycline, a licensed MMP inhibitor, suppressed TB-dependent MMP-1 and -9 secretion from primary human macrophages and epithelial cells by inhibiting promoter activation. In the guinea pig model, doxycycline reduced lung TB colony forming units after 8 weeks in a dose-dependent manner compared with untreated animals, and in vitro doxycycline inhibited mycobacterial proliferation. Conclusions: HIV coinfection in patients with TB reduces concentrations of immunopathogenic MMPs. Doxycycline decreases MMP activity in a cellular model and suppresses mycobacterial growth in vitro and in guinea pigs. Adjunctive doxycycline therapy may reduce morbidity and mortality in TB.Keywords: lung; mycobacteria; immunopathology; protease inhibitors Tuberculosis (TB) continues to kill more than 1.5 million people a year (1). Standard treatment for TB has remained unchanged for more than 30 years (2), and multidrug-and extensively drugresistant strains are progressively emerging (3, 4). Mortality rates remain high among patients even after they have commenced TB treatment (5, 6). A characteristic hallmark of TB is tissue destruction, causing morbidity, mortality, and transmission of infection. However, the mediators of this immunopathology are incompletely understood (7,8), preventing the design of rational therapies to reduce immunemediated host damage and improve outcomes in TB.TB is primarily a disease of the lung (9, 10). In advanced HIV infection, with severely reduced CD4 cell counts, TB infection is common, but there is reduced tissue destruction and cavitation rarely occurs (11). The underlying cause of divergent pathology in HIV-TB coinfection is poorly defined, and greater understanding of this tissue destruction may identify novel therapeutic approaches to limit morbidity and mortality. The biochemistry of the lung extracellular matrix predicts that matrix metalloproteinases (MMPs) will be ...