Background and Objective:Clinical and experimental observations emphasize the role of inflammation as a direct risk factor for stroke. To better characterize the inflammation, we have conducted a detailed histological analysis of the inflammatory cell population after transient middle cerebral artery occlusion in a rat model.
Methods:Fifteen adult Wistar male rats were divided randomly into test (n=10) and sham (n=5) groups. In the ischemic group, transient focal cerebral ischemia was induced with an intraluminal filament technique. Histologic lesions of the ischemic core and the surrounding penumbra zone were evaluated, based on a complex algorithm. Representative morphological changes in the core and the penumbra zone were compared. Immunohistochemistry was performed for leukocytes markers (CD15, CD68, CD3), leukocyte-released effectors (MMP-9 and COX-2), and FXIII (possibly involved in microglia and macrophage activation)Results: Neuronal vacuolation and degeneration were significantly more in the core lesion, whereas cellular edema and inflammatory infiltrate were increased in the penumbra. CD68, CD3, FXIII and Cox-2 expression were significantly higher in the penumbra than in the core (p=0.026; p=0.006; p=0.002; and p<0.001).Discussion: In the rat model of middle cerebral artery occlusion, inflammatory mechanisms, microglia/macrophage cells, and T-lymphocytes likely play an important role in the penumbra. The deterioration of neurons is less in the penumbra than in the core. Appreciation of the role of the inflammatory cells and mechanisms involved in stroke might lead to measures to inhibit the injury and save brain volume. ABSTRACT Background and Objective: Clinical and experimental observations emphasize the role of inflammation as a direct risk factor for stroke. To better characterize the inflammation, we have conducted a detailed histological analysis of the inflammatory cell population after transient middle cerebral artery occlusion in a rat model.