There has been limited research on assessing metalloproteinases (MMPs) 1, 2, and 7, as well as their tissue inhibitors (TIMPs) 1, 2, 3, and 4 in the context of polytrauma. These proteins play crucial roles in various physiological and pathological processes and could be a reliable tool in polytrauma care. We aimed to determine their clinical relevance. We assessed 24 blunt polytrauma survivors and 12 fatalities (mean age, 44.2 years, mean ISS, 45) who were directly admitted to our Level I trauma center and spent at least one night in the intensive care unit. We measured serum levels of the selected proteins on admission (day 0) and days 1, 3, 5, 7, and 10. The serum levels of the seven proteins varied considerably among individuals, resulting in similar median trend curves for TIMP1 and TIMP4 and for MMP1, MMP2, TIMP2, and TIMP3. We also found a significant interrelationship between the MMP2, TIMP2, and TIMP3 levels at the same measurement points. Furthermore, we calculated significant cross-correlations between MMP7 and MMP1, TIMP1 and MMP7, TIMP3 and MMP1, TIMP3 and MMP2, and TIMP4 and TIMP3 and an almost significant correlation between MMP7 and TIMP1 for a two-day-lag. The autocorrelation coefficient reached statistical significance for MMP1 and TIMP3. Finally, lower TIMP1 serum levels were associated with in-hospital mortality upon admission. The causal effects and interrelationships between selected proteins might provide new insights into the interactions of MMPs and TIMPs. Identifying the underlying causes might help develop personalized therapies for patients with multiple injuries. Administering recombinant TIMP1 or increasing endogenous production could improve outcomes for those with multiple injuries. However, before justifying further investigations into basic research and clinical relevance, our findings must be validated in a multicenter study using independent cohorts to account for clinical and biological variability.